a Therm

SPCL1 Series (1 kA)



#### **Description**

The SPCL1 series of high power TVS diode is specially designed for meeting severe surge test environment of both AC and DC line protection applications. It features a very fast response and ultra low clamping characteristics over traditional metal oxide varistor ( MOV ) solutions. They can be connected in series and / or parallel to create a very high surge current protection solution.

#### **Applications**

- Communication Equipment
- Security & Protection
- Industrial Control Equipment
- Power Supply
- Automotive Electronics
- New Energy
- Lightning Protection

#### **Features**

- Very low clamping voltage
- Sharp breakdown voltage
- Low slope resistance
- Bi-directional
- IEC-61000-4-2 ESD 30 kV ( Air ), 30 kV ( Contact )
- Symmetric in leads width for easier soldering during assembly
- ESD protection of data lines in accordance with IEC 61000-4-2
- EFT protection of data lines in accordance with IEC 61000-4-4
- Halogen-free
- RoHS compliant
- Glass passivated junction
- Pb-free E4 means 2nd level interconnect is Pb-free and the terminal finish material is Silver

## **Functional Diagram**



Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

SPCL1 Series (1 kA)

a Therm

## **Package Outline Dimensions**





| Symbol                          | Millimeters                                  | Inches        |  |  |
|---------------------------------|----------------------------------------------|---------------|--|--|
| Α                               | 24.15 ± 1.00                                 | 0.950 ± 0.040 |  |  |
| В                               | 2.50 ± 0.70                                  | 0.100 ± 0.028 |  |  |
| С                               | 6.00 ± 1.00                                  | 0.236 ± 0.039 |  |  |
| D                               | 14.48 max.                                   | 0.570 max.    |  |  |
| E                               | 1.28 ± 0.05                                  | 0.051 ± 0.002 |  |  |
| F                               | 12.70 max.                                   | 0.500 max.    |  |  |
| G                               | 2.44 ± 1.00                                  | 0.096 ± 0.040 |  |  |
| L <sub>1</sub> / L <sub>2</sub> | $L_1 = L_2$ Tolerance ± 1.0 mm ( 0.04 inch ) |               |  |  |

#### **Maximum Ratings and Thermal Characteristics**

(T<sub>A</sub> = 25 °C unless otherwise specified.)

| Parameter                            | Symbol           | Value      | Unit |
|--------------------------------------|------------------|------------|------|
| Operating Storage Temperature Range  | T <sub>STG</sub> | -55 to 150 | °C   |
| Operating Junction Temperature Range | TJ               | -55 to 125 | °C   |
| Current Rating (Note 1)              | I <sub>pp</sub>  | 1          | kA   |

Rated I<sub>PP</sub> measured with 8/20 µs pulse.

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

SPCL1 Series (1 kA)

a Therm

#### **Part Numbering System**



## Marking



Transient Voltage Suppression Diodes

SPCL1 Series (1 kA)

a Therm

## Glossary

| Item                   | Description                                                                                                                                                                                                                                      |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>V</b> c             | Clamping Voltage  Voltage across TVS in a region of low differential resistance that serves to limit the voltage across the device terminals.                                                                                                    |
| $V_{R}$                | Reverse Stand-off Voltage Maximum voltage that can be applied to the TVS without operation. NOTE: It is also shown as $V_{\text{WM}}$ (maximum working voltage (maximum d.c. voltage)) and known as rated stand-off voltage ( $V_{\text{so}}$ ). |
| I <sub>R</sub>         | Reverse Leakage Current  Current measured at $V_{R.}$ NOTE: Also shown as $I_{D}$ for stand-by current.                                                                                                                                          |
| $V_{BR}$               | Breakdown Voltage Voltage across TVS at a specified current $I_T$ in the breakdown region.                                                                                                                                                       |
| <b>I</b> PPM           | Rated Random Recurring Peak Impulse Current  Maximum-rated value of random recurring peak impulse current that may be applied to a device.                                                                                                       |
| $oldsymbol{P}_{M(AV)}$ | Rated Average Power Dissipation  Maximum-rated value of power dissipation resulting from all sources, including transients and standby current, averaged over a short period of time.                                                            |
| $P_{PPM}$              | Rated Random Recurring Peak Impulse Power Dissipation  Maximum-rated value of the product of rated random recurring peak impulse current (I <sub>PPM</sub> ) multiplies by specified maximum clamping voltage (V <sub>C</sub> ).                 |
| С                      | Capacitance Capacitance across the TVS measured at a specified frequency and voltage.                                                                                                                                                            |
| V <sub>FS</sub>        | Peak Forward Surge Voltage  Peak voltage across an TVS for a specified forward surge current ( <i>I</i> <sub>FS</sub> ) and time duration.  NOTE: Also shown as <i>V</i> <sub>F</sub> .                                                          |
| I <sub>FS</sub>        | Forward Surge Current  Pulsed current through TVS in the forward conducting region.  NOTE: Also shown as I <sub>F.</sub>                                                                                                                         |
| $a_{V(BR)}$            | Temperature Coefficient of Breakdown Voltage  The change of breakdown voltage divided by the change of temperature.                                                                                                                              |
| I <sub>PP</sub>        | Peak pulse Current Peak pulse current value applied across the TVS to determine the clamping voltage $V_{\mathbb{C}}$ for a specified wave shape.                                                                                                |
| lτ                     | Pulsed D.C. Test Current Test current for measurement of the breakdown voltage $V_{BR}$ . This is defined by the manufacturer and usually given in milliamperes with a pulse duration of less than 40 ms.  NOTE: Also shown as $I_{BR}$ .        |

--(GB-T 18802.321 / IEC 61643-321 / JESD210A)



**Transient Voltage Suppression Diodes** 

SPCL1 Series (1 kA)

#### Electrical Characteristics (T<sub>A</sub>=25 °C unless otherwise noted )Table 1

| Part Number  | Device<br>Marking<br>Code | Break<br>Volta<br>V <sub>BR</sub> ( | age | Test<br>Current<br>I <sub>T</sub> | Stand-off<br>Voltage<br>V <sub>R</sub> | Max.<br>Reverse<br>Leakage<br>I <sub>R</sub> @V <sub>R</sub> | Typical<br>I <sub>R</sub> @85°C | Max. Clamping<br>Voltage<br>V <sub>CL</sub> @ I <sub>pp</sub> Peak<br>Pulse Current |                     | Max.<br>Temp<br>Coefficient<br>OF V <sub>BR</sub> | Max.<br>Capacitance<br>0 Bias 10kHz |
|--------------|---------------------------|-------------------------------------|-----|-----------------------------------|----------------------------------------|--------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|---------------------|---------------------------------------------------|-------------------------------------|
|              |                           | Min                                 | Max |                                   |                                        |                                                              |                                 |                                                                                     | ър)<br>te 1)        |                                                   |                                     |
|              |                           | (V                                  | ")  | (mA)                              | (V)                                    | (μΑ)                                                         | (μΑ)                            | I <sub>PP</sub> (A)                                                                 | V <sub>CL</sub> (V) | (%/°C)                                            | (nF)                                |
| SPCL1 - 076C | 1-076C                    | 85                                  | 95  | 10                                | 76                                     | 10                                                           | 15                              | 1000                                                                                | 140                 | 0.1                                               | 8.5                                 |

Note

Using 8/20 µS wave shape as defined in IEC 61000-4-5.

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

# a Therm

#### Ratings and Characteristic Curves (T<sub>A</sub> =25 °C unless otherwise noted)



FIGURE 1 - Peak Power Derating



FIGURE 2 - Typical Peak Pulse Power Rating Curve

#### Ratings and Characteristic Curves (T<sub>A</sub> =25 °C unless otherwise noted) (Continued)



FIGURE 3 Typical VBR Vs Junction Temperature



FIGURE 4 Pulse Waveform

#### Flow/Wave Soldering (Solder Dipping)

| Peak Temperature : | 260 °C +0 / -5 °C |  |  |
|--------------------|-------------------|--|--|
| Dipping Time :     | 10 seconds        |  |  |
| Soldering :        | 1 time            |  |  |

#### **Physical Specifications**

| Weight   | Contact manufacturer                                            |  |  |  |
|----------|-----------------------------------------------------------------|--|--|--|
| Case     | e Epoxy encapsulated                                            |  |  |  |
| Terminal | Silver plated leads, solderable per MIL-<br>STD-750 Method 2026 |  |  |  |

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

**Transient Voltage Suppression Diodes** 

SPCL1 Series (1 kA)

## **Soldering Parameters**



#### **Reflowing Condition**

| Reflow Soldering                       | Lead-Free Assembly                                  |                    |  |  |
|----------------------------------------|-----------------------------------------------------|--------------------|--|--|
|                                        | Temperature Min (T <sub>S (min)</sub> )             | 150 °C             |  |  |
| Pre-heat                               | Temperature Max (T <sub>S (max)</sub> )             | 200 °C             |  |  |
|                                        | Time (min to max) (t <sub>s</sub> )                 | 60 ~ 120 seconds   |  |  |
| Average Ramp Up Rate (L                | iquidus Temp (TL) to Peak                           | 3 °C / second max. |  |  |
| T <sub>S</sub> (max) to T <sub>L</sub> | T <sub>S</sub> (max) to T <sub>L</sub> Ramp-up Rate |                    |  |  |
| D-#                                    | Temperature (T <sub>L</sub> ) (Liquidus)            | 217 °C             |  |  |
| Reflow                                 | Time (min to max) $(t_L)$                           | 60 ~ 150 seconds   |  |  |
| Peak Tempe                             | 260 <sup>+0/-5</sup> °C                             |                    |  |  |
| Time of within 5 °C of Actu            | 20 ~ 40 seconds                                     |                    |  |  |
| Ramp-do                                | 6 °C / second max.                                  |                    |  |  |
| Time from 25 °C to                     | 8 Minutes max.                                      |                    |  |  |
| Do Not                                 | 260 °C                                              |                    |  |  |

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

# TVS Diodes Transient Voltage Suppression Diodes

SPCL1 Series (1 kA)

a Therm

## **Packaging Information**

| Part Number   | Package      | Quantity           | Packaging Option |  |  |
|---------------|--------------|--------------------|------------------|--|--|
| SPCL1-XXXX    | SPCL Package | 56 PCS / Inner Box | Bulk             |  |  |
| SPCL1-XXXX-12 | SPCL Package | 12 PCS / Inner Box | Bulk             |  |  |

**Transient Voltage Suppression Diodes** 

SPCL1 Series (1 kA)



#### **Usage**

- 1.TVS must be operated in the specified ambient temp.
- 2.Do not clean the TVS with strong polar solvent such as ketone, esters, benzene and halogenated hydrocarbon, to avoid damaging the encapsulating layer.
- 3. Please do not apply severe vibration, shock or pressure to TVS, to avoid element cracking.

#### Replacement

- 1.If TVS is visually damaged, please replace it.
- 2.TVS is a non-repairable product. For safety sake, please use equivalent TVS for replacement.

#### Storage

- 1.Storage Temp. Range: (-55 to 150) °C.
- 2.Do not store the TVS at the high temp., high humidity or corrosive gas environment, to avoid influencing the solder- ability of the lead wires. The product shall be used up within 1 year after receiving the goods.

#### **Environmental Conditions**

- 1.TVS should not be exposed to the open air, nor direct sunshine.
- 2.TVS should avoid rain, water vapor or other condition of high temp. and high humidity.
- 3.TVS should avoid sand dust, salt mist, or other harmful gases.

#### Max. Typical Capacitance of TVS

The typical capacitance of TVS is listed in the specifications. Designers may refer to it when designing TVS in High frequency circuit.

#### **Installation Mechanical Stress**

- 1.Do not knock TVS when installing, to avoid mechanical damage.
- 2. Please do not apply severe vibration, shock or pressure to TVS, to avoid surface resin or element cracking.

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt