SPCL10 Series (10 kA) ## **Description** The SPCL10 series of high power TVS diode is specially designed for meeting severe surge test environment of both AC and DC line protection applications. It features a very fast response and ultra low clamping characteristics over traditional metal oxide varistor (MOV) solutions. They can be connected in series and / or parallel to create a very high surge current protection solution. ## **Applications** - Communication Equipment - Security & Protection - Industrial Control Equipment - Power Supply - Automotive Electronics - New Energy - Lightning Protection #### **Features** - Very low clamping voltage - Sharp breakdown voltage - Low slope resistance - Bi-directional - Snapback technology for superior clamping factor - Symmetric in leads width for easier soldering during assembly - IEC-61000-4-2 ESD 30 kV (Air), 30 kV (Contact) - ESD protection of data lines in accordance with IEC 61000-4-2 - EFT protection of data lines in accordance with IEC 61000-4-4 - Halogen-free - RoHS compliant - Glass passivated junction - Pb-free E4 means 2nd level interconnect is Pb-free and the terminal finish material is Silver ## **Functional Diagram** Bi-Directional # TVS Diodes Transient Voltage Suppression Diodes # Package Outline Dimensions | Symbol | Millimeters | Inches | | |---------------------------------|--|---------------|--| | А | 24.15 ± 1.00 | 0.950 ± 0.040 | | | A - 530C | 34.70 ± 2.00 | 1.370 ± 0.080 | | | В | 2.50 ± 0.70 | 0.100 ± 0.028 | | | С | 6.00 ± 1.00 | 0.236 ± 0.040 | | | D | 14.48 max. | 0.570 max. | | | E | 1.28 ± 0.05 | 0.051 ± 0.002 | | | F | 12.70 max. | 0.500 max. | | | G - 015C | 3.60 ± 1.00 | 0.142 ± 0.040 | | | G - 030C | 4.23 ± 1.00 | 0.167 ± 0.040 | | | G - 058C / -066C / - 076C | 5.08 ± 1.00 | 0.200 ± 0.040 | | | G - 170C / - 190C | 9.20 ± 1.00 | 0.362 ± 0.040 | | | G - 240C | 10.67 ± 1.00 | 0.420 ± 0.040 | | | G - 380C / - 430C | 14.50 ± 1.20 | 0.571 ± 0.047 | | | G - 530C | 27.00 ± 1.50 | 1.060 ± 0.060 | | | L ₁ / L ₂ | $L_1 = L_2$ Tolerance ± 1.0 mm(0 .04 inch) | | | ## **TVS Diodes** **Transient Voltage Suppression Diodes** ## **Part Numbering System** Type 1 - Side View Type 2 - Top View Alpha Therm GmbH Gewerbering 7 68723 Plankstadt TVS Diodes Transient Voltage Suppression Diodes # SPCL10 Series (10 kA) ## Glossary | Item | Description | | | | | | | |------------------------|---|--|--|--|--|--|--| | | Clamping Voltage | | | | | | | | V _C | Voltage across TVS in a region of low differential resistance that serves to limit the voltage across the device terminals. | | | | | | | | | Reverse Stand-off Voltage | | | | | | | | V_{R} | Maximum voltage that can be applied to the TVS without operation. | | | | | | | | , r | NOTE : It is also shown as V_{WM} (maximum working voltage (maximum d.c. voltage)) and known as rated stand-off voltage (V_{so}). | | | | | | | | | Reverse Leakage Current | | | | | | | | I _R | Current measured at V _R . | | | | | | | | | NOTE : Also shown as I_D for stand-by current. | | | | | | | | V BR | Breakdown Voltage | | | | | | | | V BR | Voltage across TVS at a specified current I_T in the breakdown region. | | | | | | | | I _{PPM} | Rated Random Recurring Peak Impulse Current | | | | | | | | 7РРМ | Maximum-rated value of random recurring peak impulse current that may be applied to a device. | | | | | | | | | Rated Average Power Dissipation | | | | | | | | P _{M(AV)} | Maximum-rated value of power dissipation resulting from all sources, including transients and standby current, | | | | | | | | | averaged over a short period of time. | | | | | | | | | Rated Random Recurring Peak Impulse Power Dissipation | | | | | | | | P PPM | Maximum-rated value of the product of rated random recurring peak impulse current (I _{PPM}) multiplies by specified | | | | | | | | | maximum clamping voltage ($V_{\mathbb{C}}$). | | | | | | | | C _J | Capacitance | | | | | | | | | Capacitance across the TVS measured at a specified frequency and voltage. | | | | | | | | | Peak Forward Surge Voltage | | | | | | | | V _{FS} | Peak voltage across an TVS for a specified forward surge current (I _{FS}) and time duration. | | | | | | | | | NOTE : Also shown as V _F . | | | | | | | | | Forward Surge Current | | | | | | | | I _{FS} | Pulsed current through TVS in the forward conducting region. | | | | | | | | | NOTE : Also shown as I _{F.} | | | | | | | | α _{V(BR)} | Temperature Coefficient of Breakdown Voltage | | | | | | | | V(BR) | The change of breakdown voltage divided by the change of temperature. | | | | | | | | I PP | Peak pulse Current Peak pulse current value applied across the TVS to determine the clamping voltage $V_{\mathbb{C}}$ for a specified wave shape. | | | | | | | | | Pulsed D.C. Test Current | | | | | | | | | Test current for measurement of the breakdown voltage V_{BR} . This is defined by the manufacturer and usually | | | | | | | | I ⊤ | given in milliamperes with a pulse duration of less than 40 ms. | | | | | | | | | NOTE : Also shown as I_{BR} . | | | | | | | | | | | | | | | | --(GB-T 18802.321 / IEC 61643-321 / JESD210A) **Transient Voltage Suppression Diodes** # SPCL10 Series (10 kA) ## Electrical Characteristics (T_A = 25 °C unless otherwise noted)Table 1 | Part Number | Marking Volt | Breakdown
Voltage
V _{BR} @I _T
Test
Curren
I _T | | Stand-off
t Voltage
V _R | Max
Reverse
Leakage
I _R @V _R | Typical
I _R @85°C | Max. Clamping
Voltage
VCL @ lpp Peak
Pulse Current
(IPP) | | Max.
Temp
Coefficient
OF V _{BR} | Max.
Capacitance
0 Bias 10kHz | | |-------------|--------------|---|------------|--|---|---------------------------------|--|---------------------|---|-------------------------------------|------| | | | Min | Max | | | | | (Not | <u> </u> | | | | | | (\ | ') | (mA) | (V) | (μΑ) | (μΑ) | I _{PP} (A) | V _{CL} (V) | (% / °C) | (nF) | | SPCL10-015C | 10-015C | 16 | 19 | 10 | 15 | 10 | 15 | 10000 | 28 | 0.1 | 40.0 | | SPCL10-030C | 10-030C | 32 | 37 | 10 | 30 | 10 | 15 | 10000 | 58 | 0.1 | 20.0 | | SPCL10-058C | 10-058C | 64 | 70 | 10 | 58 | 10 | 15 | 10000 | 110 | 0.1 | 10.0 | | SPCL10-066C | 10-066C | 72 | 80 | 10 | 66 | 10 | 15 | 10000 | 120 | 0.1 | 10.0 | | SPCL10-076C | 10-076C | 85 | 95 | 10 | 76 | 10 | 15 | 10000 | 140 | 0.1 | 6.5 | | SPCL10-170C | 10-170C | 180 | 220 | 10 | 170 | 10 | 15 | 10000 | 260 | 0.1 | 4.0 | | SPCL10-190C | 10-190C | 200 | 245 | 10 | 190 | 10 | 15 | 10000 | 290 | 0.1 | 3.0 | | SPCL10-240C | 10-240C | 250 | 285 | 10 | 240 | 10 | 15 | 10000 | 340 | 0.1 | 2.2 | | SPCL10-380C | 10-380C | 401 | 443 | 10 | 380 | 10 | 15 | 10000 | 520 | 0.1 | 2.0 | | SPCL10-430C | 10-430C | 440 | 490 | 10 | 430 | 10 | 15 | 10000 | 625 | 0.1 | 1.4 | | SPCL10-530C | 10-530C | 560 | 619 | 10 | 530 | 10 | 15 | 10000 | 750 | 0.1 | 1.0 | #### Note: ## **Maximum Ratings and Characteristics** (T_A = 25 °C unless otherwise specified.) | Parameter | Symbol | Value | Unit | |--------------------------------------|------------------|------------|------| | Operating Storage Temperature Range | T _{STG} | -55 to 150 | °C | | Operating Junction Temperature Range | TJ | -55 to 125 | °C | | Current Rating (Note 1) | I _{pp} | 10 | kA | Alpha Therm GmbH Gewerbering 7 68723 Plankstadt ^{1.} Using 8 / 20 µs wave shape as defined in IEC 61000-4-5. **Transient Voltage Suppression Diodes** ## Ratings and Characteristic Curves (T_A = 25 °C unless otherwise noted) FIGURE 1 Peak Pulse Power Derating Curve FIGURE 2 Pulse Waveform FIGURE 3 Typical VBR Vs Junction Temperature FIGURE 4 Peak Pulse Power Rating Curve **Transient Voltage Suppression Diodes** SPCL10 Series (10 kA) **Note**: The power dissipation causes a change in avalanche voltage during the surge and the avalanche voltage eventually returns to the original value when the transient has passed. FIGURE 5 Surge Response (8/20 Surge current waveform) ## Flow/Wave Soldering (Solder Dipping) | Peak Temperature | 260 °C +0 / -5 °C | | |------------------|-------------------|--| | Dipping Time | 10 seconds | | | Soldering Number | 1 time | | ## **Physical Specifications** | Weight | Contact manufacturer | | | | |----------|--|--|--|--| | Case | Epoxy encapsulated | | | | | Terminal | Silver plated leads, solderability per MIL-
STD-750 Method 2026 | | | | Alpha Therm GmbH Gewerbering 7 68723 Plankstadt ## **Soldering Parameters** **Reflowing Condition** | Reflow Solderi | Lead-Free Assembly | | | | | |--|--|--------------------|--|--|--| | | Temperature Min (T _{S (min)}) | 150 °C | | | | | Pre-heat | Temperature Max (T _{S (max)}) | 200 °C | | | | | | Time (min to max) (t _s) | 60 ~ 120 seconds | | | | | Average Ramp Up Rate (L | iquidus Temp (TL) to Peak | 3 °C / second max. | | | | | T _S (max) to T _L | T _S (max) to T _L Ramp-up Rate | | | | | | | Temperature (T _L) (Liquidus) | 217 °C | | | | | Reflow | Time (min to max) (t _L) | 60 ~ 150 seconds | | | | | Peak Temp | 260 ^{+0/-5} °C | | | | | | Time of within 5 °C of Act | Time of within 5 °C of Actual Peak Temperature (t _P) | | | | | | Ramp-do | 6 °C / second max. | | | | | | Time from 25 °C to | 8 Minutes max. | | | | | | Do Not | 260 °C | | | | | Alpha Therm GmbH Gewerbering 7 68723 Plankstadt TVS Diodes Transient Voltage Suppression Diodes SPCL10 Series (10 kA) ## **Packaging Information** | Part Number | Package | Quantity | Packaging Option | |----------------|--------------|--------------------|------------------| | SPCL10-XXXX | SPCL Package | 56 PCS / Inner Box | Bulk | | SPCL10-XXXX-12 | SPCL Package | 12 PCS / Inner Box | Bulk | **Transient Voltage Suppression Diodes** SPCL10 Series (10 kA) #### **Usage** - 1.TVS must be operated in the specified ambient temp. - 2.Do not clean the TVS with strong polar solvent such as ketone, esters, benzene and halogenated hydrocarbon, to avoid damaging the encapsulating layer. - 3. Please do not apply severe vibration, shock or pressure to TVS, to avoid element cracking. ### Replacement - 1.If TVS is visually damaged, please replace it. - 2.TVS is a non-repairable product. For safety sake, please use equivalent TVS for replacement. ### **Storage** - 1.Storage Temp. Range: (-55 to 150) °C. - 2.Do not store the TVS at the high temp., high humidity or corrosive gas environment, to avoid influencing the solder- ability of the lead wires. The product shall be used up within 1 year after receiving the goods. #### **Environmental Conditions** - 1.TVS should not be exposed to the open air, nor direct sunshine. - 2.TVS should avoid rain, water vapor or other condition of high temp. and high humidity. - 3.TVS should avoid sand dust, salt mist, or other harmful gases. ## Max. Typical Capacitance of TVS The typical capacitance of TVS is listed in the specifications. Designers may refer to it when designing TVS in High frequency circuit. #### **Installation Mechanical Stress** - 1.Do not knock TVS when installing, to avoid mechanical damage. - 2.Please do not apply severe vibration, shock or pressure to TVS, to avoid surface resin or element cracking. Alpha Therm GmbH Gewerbering 7 68723 Plankstadt