

Description

The SPC3 in SMTO-218 package provide the enhanced quality, easy manufacturing than typical through-hole TVS components. They can be connected in series and/or parallel to create various capability and flexible protection solutions.

Applications

- Communication Equipment
- Security & Protection
- Industrial Control Equipment
- Power Supply
- Automotive Electronics
- New Energy
- Lightning Protection

Features

- Bi-directional
- Low clamping and slope resistance
- For automatic pick and place assembly and reflow process to reduce the manufacturing cost and increase the soldering quality compared to axial leads package
- Patent pending package design
- Meet MSL level 1, per J-STD-020, LF Maximum peak of 245
 °C
- Pb-free E3 means 2nd level interconnect is Pb-free and the terminal finish material is tin (Sn)
- ESD follow IEC 61000-4-2
- Halogen free and RoHS compliant
- Tube or tape and reel pack options available

Functional Diagram

Bi-Directional

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Part Number	Voltage Rev	Reverse	Vol	Voltage Curre	Test Current	Max. Clamping Voltage V _{CL} @Peak Pulse Current (I _{PP})			Max. Temp Coefficient	Max. Capacitance
			V _{BR} @I _T Min Max		I _T	V _{CL}	I _{PP} (8/20 μS)	Ι _{ΡΡ} (10/350 μS)	of V _{BR}	0 Bias 10KHz
			Min	Max			Min	Typical		
	(V)	(μΑ)	(V)	(uA)	(V)	(A)	(A)	(%/°C)	(nF)
SPC3-066C	66	10	75	83	40	120	3000	800	0.1	6

Package Outline Dimensions (SMTO-218)

Note: Coplanarity of solder side is controlled within 0.10mm

Mounting Pad Layout (Inch)

	Millim	eters	Inches		
Symbol	Min.	Max.	Min.	Max.	
А	15.78	16.63	0.621	0.655	
В	13.43	15.09	0.529	0.594	
С	13.83	14.24	0.544	0.561	
D	6.94	7.24	0.273	0.285	
Е	17.82	18.72	0.702	0.737	
F	14.40	14.76	0.567	0.581	
G	1.88	2.84	0.074	0.112	
Н	4.89	5.65	0.193	0.222	
J	0.72	0.85	0.028	0.033	

Maximum Ratings and Characteristics

(Ratings at 25 °C ambient temperature unless otherwise specified.)

Parameter	Symbol	Value	Unit
Storage Temperature Range	T _{STG}	-55 to 150	°C
Operating Junction	T_J	-55 to 125	°C
Current Rating (8/20 μS wave)	I _{PP}	10	kA

Physical Specifications

Weight	Contact manufacturer			
Case	Epoxy molding compound encapsulated			
Terminal	Tin plated lead, solderability per MIL-STD-202 Method 208			

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

Environmental Specifications

Temperature Cycling	JESD22-A104
HTRB	JESD22-A108
MSL	JESDEC-J-STD-020, Level 1
H3TRB	JESD22-A101
RSH	JESD22-B106

Part Numbering System

Marking

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

SPC3 Series

Glossary

Item	Description
	Clamping Voltage
V _C	Voltage across TVS in a region of low differential resistance that serves to limit the voltage across the device terminals.
V _R	Reverse Stand-off Voltage Maximum voltage that can be applied to the TVS without operation. NOTE: It is also shown as V_{WM} (maximum working voltage (maximum d.c. voltage)) and known as rated stand-off voltage (V_{so}).
I _R	Reverse Leakage Current Current measured at $V_{R.}$ NOTE: Also shown as I_{D} for stand-by current.
V _{BR}	Breakdown Voltage Voltage across TVS at a specified current I_T in the breakdown region.
I _{PPM}	Rated Random Recurring Peak Impulse Current Maximum-rated value of random recurring peak impulse current that may be applied to a device.
P _{M(AV)}	Rated Average Power Dissipation Maximum-rated value of power dissipation resulting from all sources, including transients and standby current, averaged over a short period of time.
P _{PPM}	Rated Random Recurring Peak Impulse Power Dissipation Maximum-rated value of the product of rated random recurring peak impulse current (I_{PPM}) multiplies by specified maximum clamping voltage (V_C).
Сл	Capacitance Capacitance across the TVS measured at a specified frequency and voltage.
V _{FS}	Peak Forward Surge Voltage Peak voltage across an TVS for a specified forward surge current (I_{FS}) and time duration. NOTE: Also shown as $V_{F.}$
I _{FS}	Forward Surge Current Pulsed current through TVS in the forward conducting region. NOTE: Also shown as I _F .
α _{V(BR)}	Temperature Coefficient of Breakdown Voltage The change of breakdown voltage divided by the change of temperature.
I _{PP}	Peak pulse Current Peak pulse current value applied across the TVS to determine the clamping voltage $V_{\mathbb{C}}$ for a specified wave shape.
I _T	Pulsed D.C. Test Current Test current for measurement of the breakdown voltage V_{BR} . This is defined by the manufacturer and usually given in milliamperes with a pulse duration of less than 40 ms. NOTE: Also shown as I_{BR} .

--(GB-T 18802.321 / IEC 61643-321 / JESD210A)

TVS Diodes

Transient Voltage Suppression Diodes

I-V Curve Characteristics

 $\mathsf{P}_{\mathsf{PPM}}$ - Peak Pulse Power Dissipation

V_R - Stand-off Voltage

V_{BR} - Breakdown Voltage

V_C - Clamping Voltage

I_R - Reverse Leakage Current

Performance Curve for Reference(T_A=25 °C unless otherwise noted)

T_J-Initial Junction Temperature (°C)

t_r=rise time to peak value IPP-Peak Pulse Current-%IPP Peak Value 100 t_d=decay time to half value t_r×t_d=8/20 µs Half Value 50 $0 t_r$ t-Time(µs)

FIGURE 1 Peak Power Derating

FIGURE 2 Pulse Waveform

Soldering Parameters

Reflowing Condition

Reflow Soldering	Lead-Free Assembly		
	Temperature Min (T _{S (min)})	150 °C	
Pre-heat	Temperature Max (T _{S (max)})	200 °C	
	Time (min to max) (t _s)	60 ~ 120 seconds	
Average Ramp Up Rate (L	Average Ramp Up Rate (Liquidus Temp (TL) to Peak		
T _S (max) to T _L	T _S (max) to T _L Ramp-up Rate		
	Temperature (T _L) (Liquidus)	217 °C	
Reflow	Time (min to max) (t _L)	60 ~ 150 seconds	
Peak Tempo	260 ^{+0/-5} °C		
Time of within 5 °C of Acti	20 ~ 40 seconds		
Ramp-do	6 °C / second max.		
Time from 25 °C to	8 Minutes max.		
Do Not	260 °C		

Wave Soldering (Solder Dipping)

Peak Temperature	260 °C+0 /- 5 °C
Dipping Time	10 seconds
Soldering Number	1 time

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

Packaging Information

Part Number	Weight	Packaging Option	QTY's
SPC3-XXXXC	4.33 g	Tape & Reel – 32 mm/13" tape	400 PCS
SPC3-XXXXC-TP	4.33 g	Tube Pack	25 PCS /Tube

Alpha Therm GmbH Gewerbering 7 68723 Plankstadt

Usage

- 1.TVS must be operated in the specified ambient temp.
- 2.Do not clean the TVS with strong polar solvent such as ketone, esters, benzene and halogenated hydrocarbon, to avoid damaging the encapsulating layer.
- 3. Please do not apply severe vibration, shock or pressure to TVS, to avoid element cracking.

Replacement

- 1.If TVS is visually damaged, please replace it.
- 2.TVS is a non-repairable product. For safety sake, please use equivalent TVS for replacement.

Storage

- 1.Storage Temp. Range: (-55 to 150) °C.
- 2.Do not store the TVS at the high temp., high humidity or corrosive gas environment, to avoid influencing the solder- ability of the lead wires. The product shall be used up within 1 year after receiving the goods.

Environmental Conditions

- 1.TVS should not be exposed to the open air, nor direct sunshine.
- 2.TVS should avoid rain, water vapor or other condition of high temp. and high humidity.
- 3.TVS should avoid sand dust, salt mist, or other harmful gases.

Max. Typical Capacitance of TVS

The typical capacitance of TVS is listed in the specifications. Designers may refer to it when designing TVS in High frequency circuit.

Installation Mechanical Stress

- 1.Do not knock TVS when installing, to avoid mechanical damage.
- 2.Please do not apply severe vibration, shock or pressure to TVS, to avoid surface resin or element cracking.